

Yayın Tarihi	21.04.2015	Konu	Modbus RTU Unidrive M Haberleşmesi		
Yayın No		Hazırlayan	Emre Can Arslan Rev. 1.0		1.0

MODBUS RTU HABERLEŞME UYGULAMA NOTU

Bu uygulama notu Modbus RTU'yu destekleyen PLC ile Unidrive M, SI-Applications ailesi), Dökümanda Modbus RTU protokol ayarları standart olarak 1 Start Bit, 8 Data Bit, 2 Stop Bit ve NO Parity olarak seçilmiştir.

Unidrive M 701, M600 serisi üzerindeki haberleşme portuyla haberleşmektedir.

Unidrive M200 ve M400 serisi ise üzerine AI-485 adaptor takılarak haberlesme kurulabilir.

A-Bağlantı Şemaları:

1)Unidrive M600, M701 :

Haberlesme portu bağlantıları:

Pin	Function
1	120Ω Termination resistor
2	RX TX
3	Isolated 0V
4	+24V (100mA)
5	Isolated 0V
6	TX enable
7	RX\ TX\
8	RX\ TX\ (if termination resistors are required, link to pin 1)
Shell	Isolated 0V

RJ-45 portlarında (2 telli) Pin 2(Data +) ve Pin 7(Data -) yeterli olacaktır.

2)AI-485 Adaptor(Unidrive M200 ve M400 için) :

Haberlesme portu bağlantıları:

Pin	Function
1	120Ω Termination resistor
2	RX TX
3	Isolated 0V
4	+24V (100mA)
5	Isolated 0V
6	TX enable
7	RX\ TX\
8	RX\ TX\ (if termination resistors are required, link to pin 1)
Shell	Isolated 0V

RJ-45 portlarında (2 telli) Pin 2(Data +) ve Pin 7(Data -) yeterli olacaktır.

Klemens bağlantıları:

Terminal	Function	Description
1	0V SC	0V connection for EIA-RS485 port
2	/RX	EIA-RS485 Receive line (negative). Incoming.
3	RX	EIA-RS485 Receive line (positive). Incoming.
4	/TX	EIA-RS485 Transmit line (negative). Outgoing.
5	TX	EIA-RS485 Transmit line (positive). Outgoing.

Klemens bağlantılarında 2 ve 4 numaralı klemens(Data-) kısa devre yapılmalıdır. Klemens bağlantılarında 3 ve 5 numaralı klemens(Data+) kısa devre yapılmalıdır. Klemens bağlantılarında 1 numara 0V bağlantısıdır.

3)SI-APP:

2 telli bağlantı yapılabileceği gibi 4 telli bağlantı da mümkündür. Önemli olan eğer mesafeler uzaklaşır ve yüksek hızda haberleşme yapılamak istenirse ağın başına ve sonuna veri yansımalarını engellemek için 120 Ohm 0.25W'lık dirençler takılır. Düşük haberleşme hızlarında ağın dolaşabileceği maksimum mesafe 1200 metredir. Hız arttıkça maksimum mesafe de düşecektir.

Terminal	Function	Description
1	0V SC	0V connection for EIA-RS485 port
2	/RX	EIA-RS485 Receive line (negative). Incoming.
3	RX	EIA-RS485 Receive line (positive). Incoming.
4	/TX	EIA-RS485 Transmit line (negative). Outgoing.
5	TX	EIA-RS485 Transmit line (positive). Outgoing.

<u>4 Telli Bağlantı:</u>

2 Telli Bağlantı:

Şekil 1

B-Parametre Ayarları:

1)Unidrive M200, 400, 600 ve 701 :

Bağlantılar yapıldıktan sonra sürücünün haberleşme parametre ayarlarının yapılmasına sıra gelir. Unidrive M200, 400, 600 ve 701 için bu parametreler aşağıdaki gibidir:

Tablo 1					
Parametre	Değer	Açıklama			
#11.23	Örnek olarak 2	Seri Adresi			
		Modbus RTU Protokol Ayarları			
#11.24	1	8 Databit, 2 Stopbit, no parity, 1 Start bit			
#11.25	19200	Baud Rate			

Unidrive M 700 ya da M701 sürücüsünün opsiyon slotuna takılan SI-APP modulü de RS485 Modbus RTU haberleşmesini destekler. SI-APP'nin haberleşme ayarları ise:

2)SI-APP :

.

Tablo 2					
Parametre	Değer	Açıklama			
#17.05	Örnek olarak 2	Seri Adresi (0-255 arası)			
#17.06	15	Modbus RTU Protokol Ayarları			
#17.07	6	Baud Rate			

17.07 parametresinin detayı aşağıdaki tabloda anlatılmıştır.

Tablo 3				
Değer	Açıklama			
0	300bps			
1	600bps			
2	1200bps			
3	2400bps			
4	4800bps			
5	9600bps			
6	19200bps			
7	38400bps			
8	57600bps			
9	115200bps			

17.06 parametresi Modbus RTU Protokol ayarlarını göstermektedir.

	Tablo 4
Değer	Açıklama
1	4 Tel CT-ANSI Slave
5	2 Tel CT-ANSI Slave
13	4 Tel Modbus RTU Slave 1 Start Bit, 8 Data Bit, 2 Stop Bit, NO Parity
43	4 Tel Modbus RTU Slave 1 Start Bit, 8 Data Bit, 1 Stop Bit, EVEN Parity
73	4 Tel Modbus RTU Slave 1 Start Bit, 8 Data Bit, 1 Stop Bit, ODD Parity
14	4 Tel ASCII Slave 1 Start Bit, 7 Data Bit, 2 Stop Bit, NO Parity
44	4 Tel ASCII Slave 1 Start Bit, 7 Data Bit, 1 Stop Bit, EVEN Parity
74	4 Tel ASCII Slave 1 Start Bit, 7 Data Bit, 1 Stop Bit, ODD Parity
15	2 Tel Modbus RTU Slave 1 Start Bit, 8 Data Bit, 2 Stop Bit, NO Parity
45	2 Tel Modbus RTU Slave 1 Start Bit, 8 Data Bit, 1 Stop Bit, EVEN Parity
75	2 Tel Modbus RTU Slave 1 Start Bit, 8 Data Bit, 1 Stop Bit, ODD Parity
16	2 Tel ASCII Slave 1 Start Bit, 7 Data Bit, 2 Stop Bit, NO Parity
46	2 Tel ASCII Slave 1 Start Bit, 7 Data Bit, 1 Stop Bit, EVEN Parity
76	2 Tel ASCII Slave 1 Start Bit, 7 Data Bit, 1 Stop Bit, ODD Parity

17	4 Tel Modbus RTU Master 1 Start Bit, 8 Data Bit, 2 Stop Bit, NO Parity
47	4 Tel Modbus RTU Master 1 Start Bit, 8 Data Bit, 1 Stop Bit, EVEN Parity
77	4 Tel Modbus RTU Master 1 Start Bit, 8 Data Bit, 1 Stop Bit, ODD Parity
18	4 Tel ASCII Master 1 Start Bit, 7 Data Bit, 2 Stop Bit, NO Parity
48	4 Tel ASCII Master 1 Start Bit, 7 Data Bit, 1 Stop Bit, EVEN Parity
78	4 Tel ASCII Master 1 Start Bit, 7 Data Bit, 1 Stop Bit, ODD Parity
19	2 Tel Modbus RTU Master 1 Start Bit, 8 Data Bit, 2 Stop Bit, NO Parity
49	2 Tel Modbus RTU Master 1 Start Bit, 8 Data Bit, 1 Stop Bit, EVEN Parity
79	2 Tel Modbus RTU Master 1 Start Bit, 8 Data Bit, 1 Stop Bit, ODD Parity
20	2 Tel ASCII Master 1 Start Bit, 7 Data Bit, 2 Stop Bit, NO Parity
50	2 Tel ASCII Master 1 Start Bit, 7 Data Bit, 1 Stop Bit, EVEN Parity
80	2 Tel ASCII Master 1 Start Bit, 7 Data Bit, 1 Stop Bit, ODD Parity

Bu ayarları yaptıktan sonra #6.43 parametresini 1 yaparak sürücünün uzaktan kontrol çalışması açılmış olur. Ayrıca #0.05 parametresi de Pr'ye alınarak Preset hızlar ile çalıştırılmaya hazır hale gelir. Hangi Preset hız ayarı kullanılacaksa #1.15 parametresi o değer getirilir. Preset 1 için #1.15 parametresi 1 yapılır.

Modbus RTU ile sürücüye değer yazıp sürücüden değer okumak için PLC'deki yazmaçlar şu şekilde yazılmalıdır:

#MM.PP parametresi = 40000 + 100xMM + PP

Örnek olarak #1.21 parametresine hız referansı yazmak için parametreyi PLC yazmacına 40121 olarak yazmak gerekir. #5.05 parametresinden sürücü DC Bara gerilimini okumak için ise 40505 yazmak yeterlidir. Ancak #0.0 parametresine ulaşılamaz.

Sürücüyü uzaktan kontrol etmek için #6.43 parametresini etkinleştirmiştik. #6.42 control word parametresi ile de motoru kumanda edebiliriz. Control Word'ün bit bit açıklaması aşağıdaki tablodadır:

Tablo 5							
BİT 15	BİT 14	BİT 13	BİT 12	BİT 11	BİT 10	BİT 9	BİT 8
BOŞ	KEYPAD WDOG	RESET	TRIP	BOŞ	BOŞ	JOG REV	REMOTE
BİT 7	BİT 6	BİT 5	BİT 4	BİT 3	BİT 2	BİT 1	BİT 0
AUTO	NOT STOP	RUN	FWD REV	RUN REV	JOG FWD	RUN FWD	ENABLE

Motoru ileri yönde çevirmek için BİT 7, BİT 5 ve BİT 0'ın 1 olması gerekmektedir. Bu değer ikilik sayı düzeninde 10100001, onluk sayı düzeninde ise 161 olarak yazılır.

Ters yönde çevirmek için ayrıca BİT 4'ün de tetiklenmesi gerekmektedir. PLC'deki 40642 yazmacına işlememiz gereken değer ikilik sayı düzeninde 10110001, onluk sayı düzeninde ise 177'dir.

Motoru durdurmak için BİT 5 ve BİT 4'ün 0'a çekilmesi şarttır. Sayı düzenlerindeki karşılıkları 129 ve 10000001'dur.

Sürücüdeki bazı parametreler (#1.21, #2.01, #4.08, #4.02 vs.) tek veya çift ondalık hanelere sahiptirler. Bu yüzden sürücüye referans yazacağımız zaman tek ondalık haneye sahip olanları 10, çift ondalık hanelere sahip olanlara ise 100 ile çarpıp göndermek gereklidir. Okumak için ise benzer şekilde 10'a veya 100'e bölmek şarttır.

Preset 2 Hız referansına yazmak için #1.15=2 yapar ve PLC'de 40122 yazmacına 15000 yazarız. Sürücü bu değeri 1500.0 olarak algılar ve kapalı çevrimde motoru döndürür.

Sürücünün #10.40 parametresinden de sürücünün durumunu gösteren STATUS WORD'u okunur. Bu yazmaca PLC'de 41040 yazarak ulaşılır. Bu yazmacın bit bit açıklaması aşağıda belirtilmiştir:

Tablo 6							
BİT 15	BİT 14	BİT 13	BİT 12	BİT 11	BİT 10	BİT 9	BİT 8
BOŞ	Mains Loss	Direction Running	Direction Set	Brake Alarm	Brake Active	Regen	Current Limit
BİT 7	BİT 6	BİT 5	BİT 4	BİT 3	BİT 2	BİT 1	BİT 0
Load Reached	Above Set Speed	At Set Speed	Below Set Speed	Running At Speed	Zero Speed	Drive Active	Drive Healthy